Wobble Board Performance: A Practical and Useful Quantification in Balance Assessment

Balance is integral in ankle injury prevention and therapy, especially in high-risk sports like volleyball. For balance assessment, the recommended wobble board (WB) performance (i.e., time at equilibrium) has never been compared with the gold standard. The objective was to investigate the relations...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 14; no. 14; p. 6113
Main Authors Fuchs, Philip X., Fusco, Andrea, Shiang, Tzyy-Yuang, Cortis, Cristina, Wagner, Herbert
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Balance is integral in ankle injury prevention and therapy, especially in high-risk sports like volleyball. For balance assessment, the recommended wobble board (WB) performance (i.e., time at equilibrium) has never been compared with the gold standard. The objective was to investigate the relationships of force-plate-derived center of pressure (CoP) with WB performance and the accuracy of WB-derived CoP estimates. Twelve high-level volleyball players completed six unipedal standing trials on a computerized WB. WB tilt angles and CoP were obtained simultaneously via tri-axis accelerometers on the WB (200 Hz) and a force plate (1000 Hz), respectively. WB performance, polynomial-transformed CoP estimates, and CoP fractal sway, sway area, and mean sway velocity were assessed via Pearson and concordance correlation, root mean square errors, and dependent t-tests. WB performance was related with CoP sway and sway area (|rlinear| = 0.714–0.842, |rnonlinear| = 0.833–0.910, p < 0.01). The strongest concordance (0.878–0.893, p < 0.001) and smallest errors (6.5–10.7%) were reported for anterior–posterior sway and sway area. Moderate to excellent relationships between the WB performance and force plate CoP variables supported the usefulness of WB performance and estimates (especially sway area) in balance assessment. Furthermore, this study presents recommendations for future analyses and modeling approaches to reflect the complexity of postural control.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14146113