Minimization of Secrecy Outage Probability in Reconfigurable Intelligent Surface-Assisted MIMOME System

This article investigates physical layer security (PLS) in reconfigurable intelligent surface (RIS)-assisted multiple-input multiple-output multiple-antenna-eavesdropper (MIMOME) channels. Existing researches ignore the problem that secrecy rate can not be calculated if the eavesdropper's insta...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 22; no. 2; pp. 1374 - 1387
Main Authors Liu, Yiliang, Su, Zhou, Zhang, Chi, Chen, Hsiao-Hwa
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article investigates physical layer security (PLS) in reconfigurable intelligent surface (RIS)-assisted multiple-input multiple-output multiple-antenna-eavesdropper (MIMOME) channels. Existing researches ignore the problem that secrecy rate can not be calculated if the eavesdropper's instantaneous channel state information (CSI) is unknown. Furthermore, without the secrecy rate expression, beamforming and phase shifter optimization with the purpose of PLS enhancement is not available. To address these problems, we first give the expression of secrecy outage probability for any beamforming vector and phase shifter matrix as the RIS-assisted PLS metric, which is measured based on the eavesdropper's statistical CSI. Then, with the aid of the expression, we formulate the minimization problem of secrecy outage probability that is solved via alternately optimizing beamforming vectors and phase shift matrices. In the case of single-antenna transmitter or single-antenna legitimate receiver, the proposed alternating optimization (AO) scheme can be simplified to reduce computational complexity. Finally, it is demonstrated that the secrecy outage probability is significantly reduced with the proposed methods compared to current RIS-assisted PLS systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2022.3204571