Singular perturbationlike approach to compensation of actuator dynamics effect in missile control
Our recently developed nonlinear autopilot controller can make the input-output (I/O) dynamic characteristics of the nonlinear bank-to-turn (BTT) missile system linear and independent of flight conditions. However, relatively slow actuator dynamics can degrade its performance significantly. The prop...
Saved in:
Published in | IEEE transactions on aerospace and electronic systems Vol. 50; no. 4; pp. 2417 - 2439 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Our recently developed nonlinear autopilot controller can make the input-output (I/O) dynamic characteristics of the nonlinear bank-to-turn (BTT) missile system linear and independent of flight conditions. However, relatively slow actuator dynamics can degrade its performance significantly. The proposed compensation method can nearly eliminate the effect of slow actuator dynamics while maintaining the desired linear I/O dynamic characteristics. It considers fully the nonminimum-phase nonlinear BTT missile dynamics but requires no differentiations of noisy variables, unlike other existing control methods. |
---|---|
ISSN: | 0018-9251 1557-9603 |
DOI: | 10.1109/TAES.2014.120332 |