State Distribution of Markovian Jump Boolean Networks and Its Applications
This article investigates the state distribution of Markovian jump Boolean networks subject to stochastic disturbances based on the measured outputs. The considered disturbances are modeled as independent and identically distributed processes with known probability distributions. An iterative algori...
Saved in:
Published in | IEEE transactions on automatic control Vol. 68; no. 3; pp. 1815 - 1822 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article investigates the state distribution of Markovian jump Boolean networks subject to stochastic disturbances based on the measured outputs. The considered disturbances are modeled as independent and identically distributed processes with known probability distributions. An iterative algorithm is proposed to compute conditional probability distributions of the current state and one-step predicted state based on the knowledge of the output measurements. The obtained conditional probability distributions can be applied to study the optimal state estimation, reconstructibility, and fault detection of Markovian jump Boolean networks. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2022.3157078 |