A Monolithically Integrated Two-Section Laser for Wideband and Frequency-Tunable Photonic Microwave Generation

A monolithically integrated two-section laser is presented for wideband and frequency-tunable photonic microwave generation. The laser consists of two back-to-back DFB sections forming a mutually coupled structure. By properly adjusting the bias currents of two sections, the laser can stably work at...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 41; no. 2; pp. 404 - 411
Main Authors Cai, Qiang, Zhang, Yunshan, Zheng, Jilin, Zhang, Yamei, Li, Pu, Shore, K. Alan, Wang, Yuncai
Format Journal Article
LanguageEnglish
Published New York IEEE 15.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A monolithically integrated two-section laser is presented for wideband and frequency-tunable photonic microwave generation. The laser consists of two back-to-back DFB sections forming a mutually coupled structure. By properly adjusting the bias currents of two sections, the laser can stably work at the state of period-one oscillation over a wide range of frequency detuning. Based on this, continuous and linear tuning of photonic microwave signals can be achieved. Experimental results confirm that a large tunable range from 12.45 to 80.30 GHz can be realized using this laser.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0733-8724
1558-2213
DOI:10.1109/JLT.2022.3216452