Adaptive Dynamic Programming-Based Optimal Control Scheme for Energy Storage Systems With Solar Renewable Energy
In this paper, a novel optimal energy storage control scheme is investigated in smart grid environments with solar renewable energy. Based on the idea of adaptive dynamic programming (ADP), a self-learning algorithm is constructed to obtain the iterative control law sequence of the battery. Based on...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 64; no. 7; pp. 5468 - 5478 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a novel optimal energy storage control scheme is investigated in smart grid environments with solar renewable energy. Based on the idea of adaptive dynamic programming (ADP), a self-learning algorithm is constructed to obtain the iterative control law sequence of the battery. Based on the data of the real-time electricity price (electricity rate in brief), the load demand (load in brief), and the solar renewable energy (solar energy in brief), the optimal performance index function, which minimizes the total electricity cost and simultaneously extends the battery's lifetime, is established. A new analysis method of the iterative ADP algorithm is developed to guarantee the convergence of the iterative value function to the optimum under iterative control law sequence for any time index in a period. Numerical results and comparisons are presented to illustrate the effectiveness of the developed algorithm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2017.2674581 |