Hybrid Intelligence Assisted Sample Average Approximation Method for Chance Constrained Dynamic Optimization

Realistic industrial process is usually a dynamic process with uncertainty. Chance constraints are applicable to industrial process modeling under uncertain conditions, where constraints cannot be strictly met, or need not be fully met. Therefore, chance constrained dynamic optimization (CCDO) formu...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 17; no. 9; pp. 6409 - 6418
Main Authors Zhou, Xiaojun, Wang, Xiangyue, Huang, Tingwen, Yang, Chunhua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2020.3006514

Cover

Abstract Realistic industrial process is usually a dynamic process with uncertainty. Chance constraints are applicable to industrial process modeling under uncertain conditions, where constraints cannot be strictly met, or need not be fully met. Therefore, chance constrained dynamic optimization (CCDO) formulation is available to address realistic industrial process issues. Because of the dynamic and uncertainty, chance constrained dynamic optimization problems (CCDOPs) arising from practical industries are hard to cope with. In this article, a novel CCDO method is proposed to resolve this issue, where an adaptive sample average approximation method, a control vector parameterization method, and a state constraint handling strategy are integrated. Specially, a hybrid intelligent optimization algorithm is introduced to realize a global and efficient optimization performance. The proposed method is applied to CCDOPs modified by dynamic optimization standard test functions and industrial experiments to demonstrate its effectiveness. The experimental results show that the proposed method has good performance in solving CCDOPs.
AbstractList Realistic industrial process is usually a dynamic process with uncertainty. Chance constraints are applicable to industrial process modeling under uncertain conditions, where constraints cannot be strictly met, or need not be fully met. Therefore, chance constrained dynamic optimization (CCDO) formulation is available to address realistic industrial process issues. Because of the dynamic and uncertainty, chance constrained dynamic optimization problems (CCDOPs) arising from practical industries are hard to cope with. In this article, a novel CCDO method is proposed to resolve this issue, where an adaptive sample average approximation method, a control vector parameterization method, and a state constraint handling strategy are integrated. Specially, a hybrid intelligent optimization algorithm is introduced to realize a global and efficient optimization performance. The proposed method is applied to CCDOPs modified by dynamic optimization standard test functions and industrial experiments to demonstrate its effectiveness. The experimental results show that the proposed method has good performance in solving CCDOPs.
Author Wang, Xiangyue
Huang, Tingwen
Yang, Chunhua
Zhou, Xiaojun
Author_xml – sequence: 1
  givenname: Xiaojun
  orcidid: 0000-0002-6367-696X
  surname: Zhou
  fullname: Zhou, Xiaojun
  email: michael.x.zhou@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 2
  givenname: Xiangyue
  orcidid: 0000-0002-1975-5724
  surname: Wang
  fullname: Wang, Xiangyue
  email: xiangyue@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 3
  givenname: Tingwen
  orcidid: 0000-0001-9610-846X
  surname: Huang
  fullname: Huang, Tingwen
  email: tingwen.huang@qatar.tamu.edu
  organization: Texas A & M University at Qatar, Doha, Qatar
– sequence: 4
  givenname: Chunhua
  orcidid: 0000-0003-2550-1509
  surname: Yang
  fullname: Yang, Chunhua
  email: ychh@mail.csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
BookMark eNp9kM9PwjAUxxuDiYDeTbws8Tx8XdeNHQn-gATDQTwvXX9AyehmW4z419sB8eDB03tNv5_2vc8A9UxjJEK3GEYYQ_Gwms9HCSQwIgAZxekF6uMixTEAhV7oKcUxSYBcoYFzWwCSAyn6qJ4dKqtFNDde1rVeS8NlNHFOOy9F9MZ2bR3On9Kydahta5svvWNeNyZ6lX7TiEg1NppuWMdNG-O8ZdoE9PFg2E7zaNl6vdPfR-QaXSpWO3lzrkP0_vy0ms7ixfJlPp0sYp4U2MdcgRjnQEmVViJjDCRjGCfjSqicM0LChQIlE0xyznlV0LwSBSWKgsqowIIM0f3p3TDux146X26bvTXhyzKhKU6zgozzkMpOKW4b56xUJdf-OGe3Q11iKDuzZTBbdmbLs9kAwh-wtUGKPfyH3J0QLaX8jReYJDmMyQ-0PIeT
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TNNLS_2022_3186475
crossref_primary_10_1016_j_knosys_2022_108119
crossref_primary_10_1016_j_knosys_2021_107801
crossref_primary_10_1016_j_energy_2023_127695
crossref_primary_10_3390_fractalfract5040140
crossref_primary_10_1109_ACCESS_2022_3232812
crossref_primary_10_3390_math11081854
crossref_primary_10_1016_j_cam_2024_116361
crossref_primary_10_1016_j_asoc_2022_109613
crossref_primary_10_1080_00207543_2024_2431182
crossref_primary_10_1016_j_asoc_2022_108733
crossref_primary_10_1016_j_swevo_2024_101569
crossref_primary_10_1016_j_eswa_2024_123481
crossref_primary_10_1016_j_matcom_2023_10_021
crossref_primary_10_1016_j_swevo_2025_101871
crossref_primary_10_1016_j_asoc_2022_108553
Cites_doi 10.1109/TPWRD.2017.2762927
10.1016/j.compchemeng.2013.09.017
10.1287/opre.1090.0773
10.2514/1.J056262
10.1016/j.compchemeng.2004.02.018
10.1007/s10107-017-1174-z
10.1080/00207721.2012.670310
10.1080/07408170108936827
10.1287/mnsc.6.1.73
10.1109/TNN.2006.890809
10.1016/S1874-1029(13)60044-0
10.1016/j.jprocont.2016.03.005
10.1016/j.sorms.2014.05.001
10.1080/0305215X.2014.905550
10.1016/j.cep.2006.06.021
10.1109/TEVC.2010.2059031
10.1007/s10957-009-9523-6
10.1016/j.jprocont.2015.06.011
10.21314/JOR.2000.038
10.1016/j.compchemeng.2003.11.003
10.1007/s10479-015-1844-2
10.1016/j.compchemeng.2009.01.022
10.1016/S0009-2509(98)00432-1
10.1109/TSG.2016.2550031
10.1016/j.energy.2018.12.156
10.1002/aic.690480212
10.1109/TAC.2012.2203054
10.1016/j.jprocont.2007.05.001
10.1016/j.compchemeng.2006.09.015
10.1109/TII.2019.2943500
10.1016/j.cjche.2017.09.010
10.1109/TCYB.2018.2850350
10.1109/TPWRS.2017.2745410
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2020.3006514
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 6418
ExternalDocumentID 10_1109_TII_2020_3006514
9132708
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61988101; 61873285
  funderid: 10.13039/501100001809
– fundername: Innovation-Driven Plan in Central South University
  grantid: 2018CX12
– fundername: National Natural Science Foundation of China
  grantid: 61860206014
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2019zzts575
  funderid: 10.13039/501100012226
– fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation of China
  grantid: 2018JJ3683
  funderid: 10.13039/501100004735
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-cf0d87053b4bd6aa0eaa1128bdf7ca3353bf0fe2137cccb957bd953f50f65d1d3
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Mon Jun 30 10:24:52 EDT 2025
Tue Jul 01 03:00:10 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Wed Aug 27 02:50:50 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-cf0d87053b4bd6aa0eaa1128bdf7ca3353bf0fe2137cccb957bd953f50f65d1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2550-1509
0000-0002-1975-5724
0000-0001-9610-846X
0000-0002-6367-696X
PQID 2541469387
PQPubID 85507
PageCount 10
ParticipantIDs ieee_primary_9132708
crossref_citationtrail_10_1109_TII_2020_3006514
proquest_journals_2541469387
crossref_primary_10_1109_TII_2020_3006514
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref34
ref12
yunqing (ref27) 2013; 39
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
branda (ref13) 2012; 48
References_xml – ident: ref2
  doi: 10.1109/TPWRD.2017.2762927
– ident: ref20
  doi: 10.1016/j.compchemeng.2013.09.017
– ident: ref17
  doi: 10.1287/opre.1090.0773
– ident: ref5
  doi: 10.2514/1.J056262
– ident: ref22
  doi: 10.1016/j.compchemeng.2004.02.018
– volume: 48
  start-page: 105
  year: 2012
  ident: ref13
  article-title: Chance constrained problems: Penalty reformulation and performance of sample approximation technique
  publication-title: Kybernetika
– ident: ref15
  doi: 10.1007/s10107-017-1174-z
– ident: ref6
  doi: 10.1080/00207721.2012.670310
– ident: ref18
  doi: 10.1080/07408170108936827
– ident: ref4
  doi: 10.1287/mnsc.6.1.73
– ident: ref23
  doi: 10.1109/TNN.2006.890809
– volume: 39
  start-page: 440
  year: 2013
  ident: ref27
  article-title: Methods to deal with control variable path constraints in dynamic optimization problems
  publication-title: ACTA Automatica Sinica
  doi: 10.1016/S1874-1029(13)60044-0
– ident: ref10
  doi: 10.1016/j.jprocont.2016.03.005
– ident: ref11
  doi: 10.1016/j.sorms.2014.05.001
– ident: ref14
  doi: 10.1080/0305215X.2014.905550
– ident: ref21
  doi: 10.1016/j.cep.2006.06.021
– ident: ref24
  doi: 10.1109/TEVC.2010.2059031
– ident: ref34
  doi: 10.1007/s10957-009-9523-6
– ident: ref30
  doi: 10.1016/j.jprocont.2015.06.011
– ident: ref32
  doi: 10.21314/JOR.2000.038
– ident: ref19
  doi: 10.1016/j.compchemeng.2003.11.003
– ident: ref8
  doi: 10.1007/s10479-015-1844-2
– ident: ref26
  doi: 10.1016/j.compchemeng.2009.01.022
– ident: ref28
  doi: 10.1016/S0009-2509(98)00432-1
– ident: ref9
  doi: 10.1109/TSG.2016.2550031
– ident: ref3
  doi: 10.1016/j.energy.2018.12.156
– ident: ref29
  doi: 10.1002/aic.690480212
– ident: ref33
  doi: 10.1109/TAC.2012.2203054
– ident: ref16
  doi: 10.1016/j.jprocont.2007.05.001
– ident: ref12
  doi: 10.1016/j.compchemeng.2006.09.015
– ident: ref31
  doi: 10.1109/TII.2019.2943500
– ident: ref1
  doi: 10.1016/j.cjche.2017.09.010
– ident: ref25
  doi: 10.1109/TCYB.2018.2850350
– ident: ref7
  doi: 10.1109/TPWRS.2017.2745410
SSID ssj0037039
Score 2.4151287
Snippet Realistic industrial process is usually a dynamic process with uncertainty. Chance constraints are applicable to industrial process modeling under uncertain...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6409
SubjectTerms Adaptive control
Adaptive sampling
Algorithms
Approximation
Chance constrained optimization (CCO)
Constraint modelling
Convergence
data-driven method
dynamic optimization
Heuristic algorithms
hybrid intelligence
Hybrid systems
Informatics
Mathematical analysis
Optimization
Parameterization
Production
sample average approximation (SAA)
Transforms
Uncertainty
Title Hybrid Intelligence Assisted Sample Average Approximation Method for Chance Constrained Dynamic Optimization
URI https://ieeexplore.ieee.org/document/9132708
https://www.proquest.com/docview/2541469387
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6rJz34FldXycGLYHebJk2a4-KDXWH1oIK30uYBoq6iu6D-emfSdvGFeCskA4FvZjLTzHxDyL4U0jMPBqgT5SORMRmVSsgos7BScMOUw0RxdC4H1-LsJr1pkcNZL4xzLhSfuS5-hrd8-2im-KuspyF1UtjZOwdqVvVqNV6Xg-bqwI2asognMW-eJGPduxoOIRFMID_FC5eJL1dQmKnywxGH2-V0mYyac1VFJXfd6aTsmvdvlI3_PfgKWarDTNqv9GKVtNx4jSx-Ih9cJ_eDN-zWosNPpJwU0ELcLb0skDaY9kHTwePQPlKPv95WfY50FMZOU4h3KXYngBzO_QzTJkD0uBpyTy_AGz3UbZ4b5Pr05OpoENWzFyKTaDaJjI8tmHLKS1FaWRSxKwoIzbLSemUKzmHBx94ljCtjTKlTVVqdcp_GXqaWWb5J5sePY7dFKFK-SSukMD4TmU2RtIopJNpLjGDOtEmvgSM3NTE5nvg-DwlKrHMAMEcA8xrANjmYSTxVpBx_7F1HPGb7aijapNMgntdW-5InOBNdap6p7d-ldshCgjUtocasQ-Ynz1O3C0HJpNwL2vgBfJ7d6Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxRBEC5CclAPGo3iahL74EVwdqenX9PHJQ92NRsPbiC3YaYfEEw2QXdB8-tT1TOzRA3ibaC7oOGrrsd01VcA77XUkUe8gLYwMZMl11ljpM5Kjyu1cNwEShRnp3pyJj-dq_MN-LjuhQkhpOKzMKTP9Jbvr92KfpWNLKZOhjp7t9DvS9V2a_V2V6Du2sSOqngmilz0j5K5Hc2nU0wFC8xQyeVy-ZsTSlNV_jLFyb8cP4NZf7K2rOTbcLVshu72D9LG_z36NjztAk02bjXjOWyExQt4co9-cAcuJ7-oX4tN79FyMsSLkPfsa03EwWyMuo42h42JfPznRdvpyGZp8DTDiJdRfwLK0eTPNG8CRQ_bMffsC9qjq67R8yWcHR_NDyZZN30hc4Xly8zF3ONlVqKRjdd1nYe6xuCsbHw0rhYCF2IeQ8GFcc41VpnGWyWiyqNWnnvxCjYX14vwGhiRvmkvtXSxlKVXRFvFDVHtFU7y4AYw6uGoXEdNTie-rFKKktsKAawIwKoDcAAf1hI3LS3HP_buEB7rfR0UA9jtEa-6e_ujKmgquraiNG8elnoHjybz2Ul1Mj39_BYeF1ThkirOdmFz-X0V9jBEWTb7STPvAEFt4TY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Intelligence+Assisted+Sample+Average+Approximation+Method+for+Chance+Constrained+Dynamic+Optimization&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Zhou%2C+Xiaojun&rft.au=Wang%2C+Xiangyue&rft.au=Huang%2C+Tingwen&rft.au=Yang%2C+Chunhua&rft.date=2021-09-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=9&rft.spage=6409&rft.epage=6418&rft_id=info:doi/10.1109%2FTII.2020.3006514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2020_3006514
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon