Hybrid Intelligence Assisted Sample Average Approximation Method for Chance Constrained Dynamic Optimization
Realistic industrial process is usually a dynamic process with uncertainty. Chance constraints are applicable to industrial process modeling under uncertain conditions, where constraints cannot be strictly met, or need not be fully met. Therefore, chance constrained dynamic optimization (CCDO) formu...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 17; no. 9; pp. 6409 - 6418 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1551-3203 1941-0050 |
DOI | 10.1109/TII.2020.3006514 |
Cover
Abstract | Realistic industrial process is usually a dynamic process with uncertainty. Chance constraints are applicable to industrial process modeling under uncertain conditions, where constraints cannot be strictly met, or need not be fully met. Therefore, chance constrained dynamic optimization (CCDO) formulation is available to address realistic industrial process issues. Because of the dynamic and uncertainty, chance constrained dynamic optimization problems (CCDOPs) arising from practical industries are hard to cope with. In this article, a novel CCDO method is proposed to resolve this issue, where an adaptive sample average approximation method, a control vector parameterization method, and a state constraint handling strategy are integrated. Specially, a hybrid intelligent optimization algorithm is introduced to realize a global and efficient optimization performance. The proposed method is applied to CCDOPs modified by dynamic optimization standard test functions and industrial experiments to demonstrate its effectiveness. The experimental results show that the proposed method has good performance in solving CCDOPs. |
---|---|
AbstractList | Realistic industrial process is usually a dynamic process with uncertainty. Chance constraints are applicable to industrial process modeling under uncertain conditions, where constraints cannot be strictly met, or need not be fully met. Therefore, chance constrained dynamic optimization (CCDO) formulation is available to address realistic industrial process issues. Because of the dynamic and uncertainty, chance constrained dynamic optimization problems (CCDOPs) arising from practical industries are hard to cope with. In this article, a novel CCDO method is proposed to resolve this issue, where an adaptive sample average approximation method, a control vector parameterization method, and a state constraint handling strategy are integrated. Specially, a hybrid intelligent optimization algorithm is introduced to realize a global and efficient optimization performance. The proposed method is applied to CCDOPs modified by dynamic optimization standard test functions and industrial experiments to demonstrate its effectiveness. The experimental results show that the proposed method has good performance in solving CCDOPs. |
Author | Wang, Xiangyue Huang, Tingwen Yang, Chunhua Zhou, Xiaojun |
Author_xml | – sequence: 1 givenname: Xiaojun orcidid: 0000-0002-6367-696X surname: Zhou fullname: Zhou, Xiaojun email: michael.x.zhou@csu.edu.cn organization: School of Automation, Central South University, Changsha, China – sequence: 2 givenname: Xiangyue orcidid: 0000-0002-1975-5724 surname: Wang fullname: Wang, Xiangyue email: xiangyue@csu.edu.cn organization: School of Automation, Central South University, Changsha, China – sequence: 3 givenname: Tingwen orcidid: 0000-0001-9610-846X surname: Huang fullname: Huang, Tingwen email: tingwen.huang@qatar.tamu.edu organization: Texas A & M University at Qatar, Doha, Qatar – sequence: 4 givenname: Chunhua orcidid: 0000-0003-2550-1509 surname: Yang fullname: Yang, Chunhua email: ychh@mail.csu.edu.cn organization: School of Automation, Central South University, Changsha, China |
BookMark | eNp9kM9PwjAUxxuDiYDeTbws8Tx8XdeNHQn-gATDQTwvXX9AyehmW4z419sB8eDB03tNv5_2vc8A9UxjJEK3GEYYQ_Gwms9HCSQwIgAZxekF6uMixTEAhV7oKcUxSYBcoYFzWwCSAyn6qJ4dKqtFNDde1rVeS8NlNHFOOy9F9MZ2bR3On9Kydahta5svvWNeNyZ6lX7TiEg1NppuWMdNG-O8ZdoE9PFg2E7zaNl6vdPfR-QaXSpWO3lzrkP0_vy0ms7ixfJlPp0sYp4U2MdcgRjnQEmVViJjDCRjGCfjSqicM0LChQIlE0xyznlV0LwSBSWKgsqowIIM0f3p3TDux146X26bvTXhyzKhKU6zgozzkMpOKW4b56xUJdf-OGe3Q11iKDuzZTBbdmbLs9kAwh-wtUGKPfyH3J0QLaX8jReYJDmMyQ-0PIeT |
CODEN | ITIICH |
CitedBy_id | crossref_primary_10_1109_TNNLS_2022_3186475 crossref_primary_10_1016_j_knosys_2022_108119 crossref_primary_10_1016_j_knosys_2021_107801 crossref_primary_10_1016_j_energy_2023_127695 crossref_primary_10_3390_fractalfract5040140 crossref_primary_10_1109_ACCESS_2022_3232812 crossref_primary_10_3390_math11081854 crossref_primary_10_1016_j_cam_2024_116361 crossref_primary_10_1016_j_asoc_2022_109613 crossref_primary_10_1080_00207543_2024_2431182 crossref_primary_10_1016_j_asoc_2022_108733 crossref_primary_10_1016_j_swevo_2024_101569 crossref_primary_10_1016_j_eswa_2024_123481 crossref_primary_10_1016_j_matcom_2023_10_021 crossref_primary_10_1016_j_swevo_2025_101871 crossref_primary_10_1016_j_asoc_2022_108553 |
Cites_doi | 10.1109/TPWRD.2017.2762927 10.1016/j.compchemeng.2013.09.017 10.1287/opre.1090.0773 10.2514/1.J056262 10.1016/j.compchemeng.2004.02.018 10.1007/s10107-017-1174-z 10.1080/00207721.2012.670310 10.1080/07408170108936827 10.1287/mnsc.6.1.73 10.1109/TNN.2006.890809 10.1016/S1874-1029(13)60044-0 10.1016/j.jprocont.2016.03.005 10.1016/j.sorms.2014.05.001 10.1080/0305215X.2014.905550 10.1016/j.cep.2006.06.021 10.1109/TEVC.2010.2059031 10.1007/s10957-009-9523-6 10.1016/j.jprocont.2015.06.011 10.21314/JOR.2000.038 10.1016/j.compchemeng.2003.11.003 10.1007/s10479-015-1844-2 10.1016/j.compchemeng.2009.01.022 10.1016/S0009-2509(98)00432-1 10.1109/TSG.2016.2550031 10.1016/j.energy.2018.12.156 10.1002/aic.690480212 10.1109/TAC.2012.2203054 10.1016/j.jprocont.2007.05.001 10.1016/j.compchemeng.2006.09.015 10.1109/TII.2019.2943500 10.1016/j.cjche.2017.09.010 10.1109/TCYB.2018.2850350 10.1109/TPWRS.2017.2745410 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TII.2020.3006514 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0050 |
EndPage | 6418 |
ExternalDocumentID | 10_1109_TII_2020_3006514 9132708 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61988101; 61873285 funderid: 10.13039/501100001809 – fundername: Innovation-Driven Plan in Central South University grantid: 2018CX12 – fundername: National Natural Science Foundation of China grantid: 61860206014 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 2019zzts575 funderid: 10.13039/501100012226 – fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation of China grantid: 2018JJ3683 funderid: 10.13039/501100004735 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-cf0d87053b4bd6aa0eaa1128bdf7ca3353bf0fe2137cccb957bd953f50f65d1d3 |
IEDL.DBID | RIE |
ISSN | 1551-3203 |
IngestDate | Mon Jun 30 10:24:52 EDT 2025 Tue Jul 01 03:00:10 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Wed Aug 27 02:50:50 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-cf0d87053b4bd6aa0eaa1128bdf7ca3353bf0fe2137cccb957bd953f50f65d1d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2550-1509 0000-0002-1975-5724 0000-0001-9610-846X 0000-0002-6367-696X |
PQID | 2541469387 |
PQPubID | 85507 |
PageCount | 10 |
ParticipantIDs | ieee_primary_9132708 crossref_citationtrail_10_1109_TII_2020_3006514 proquest_journals_2541469387 crossref_primary_10_1109_TII_2020_3006514 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on industrial informatics |
PublicationTitleAbbrev | TII |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref34 ref12 yunqing (ref27) 2013; 39 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 branda (ref13) 2012; 48 |
References_xml | – ident: ref2 doi: 10.1109/TPWRD.2017.2762927 – ident: ref20 doi: 10.1016/j.compchemeng.2013.09.017 – ident: ref17 doi: 10.1287/opre.1090.0773 – ident: ref5 doi: 10.2514/1.J056262 – ident: ref22 doi: 10.1016/j.compchemeng.2004.02.018 – volume: 48 start-page: 105 year: 2012 ident: ref13 article-title: Chance constrained problems: Penalty reformulation and performance of sample approximation technique publication-title: Kybernetika – ident: ref15 doi: 10.1007/s10107-017-1174-z – ident: ref6 doi: 10.1080/00207721.2012.670310 – ident: ref18 doi: 10.1080/07408170108936827 – ident: ref4 doi: 10.1287/mnsc.6.1.73 – ident: ref23 doi: 10.1109/TNN.2006.890809 – volume: 39 start-page: 440 year: 2013 ident: ref27 article-title: Methods to deal with control variable path constraints in dynamic optimization problems publication-title: ACTA Automatica Sinica doi: 10.1016/S1874-1029(13)60044-0 – ident: ref10 doi: 10.1016/j.jprocont.2016.03.005 – ident: ref11 doi: 10.1016/j.sorms.2014.05.001 – ident: ref14 doi: 10.1080/0305215X.2014.905550 – ident: ref21 doi: 10.1016/j.cep.2006.06.021 – ident: ref24 doi: 10.1109/TEVC.2010.2059031 – ident: ref34 doi: 10.1007/s10957-009-9523-6 – ident: ref30 doi: 10.1016/j.jprocont.2015.06.011 – ident: ref32 doi: 10.21314/JOR.2000.038 – ident: ref19 doi: 10.1016/j.compchemeng.2003.11.003 – ident: ref8 doi: 10.1007/s10479-015-1844-2 – ident: ref26 doi: 10.1016/j.compchemeng.2009.01.022 – ident: ref28 doi: 10.1016/S0009-2509(98)00432-1 – ident: ref9 doi: 10.1109/TSG.2016.2550031 – ident: ref3 doi: 10.1016/j.energy.2018.12.156 – ident: ref29 doi: 10.1002/aic.690480212 – ident: ref33 doi: 10.1109/TAC.2012.2203054 – ident: ref16 doi: 10.1016/j.jprocont.2007.05.001 – ident: ref12 doi: 10.1016/j.compchemeng.2006.09.015 – ident: ref31 doi: 10.1109/TII.2019.2943500 – ident: ref1 doi: 10.1016/j.cjche.2017.09.010 – ident: ref25 doi: 10.1109/TCYB.2018.2850350 – ident: ref7 doi: 10.1109/TPWRS.2017.2745410 |
SSID | ssj0037039 |
Score | 2.4151287 |
Snippet | Realistic industrial process is usually a dynamic process with uncertainty. Chance constraints are applicable to industrial process modeling under uncertain... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6409 |
SubjectTerms | Adaptive control Adaptive sampling Algorithms Approximation Chance constrained optimization (CCO) Constraint modelling Convergence data-driven method dynamic optimization Heuristic algorithms hybrid intelligence Hybrid systems Informatics Mathematical analysis Optimization Parameterization Production sample average approximation (SAA) Transforms Uncertainty |
Title | Hybrid Intelligence Assisted Sample Average Approximation Method for Chance Constrained Dynamic Optimization |
URI | https://ieeexplore.ieee.org/document/9132708 https://www.proquest.com/docview/2541469387 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA6rJz34FldXycGLYHebJk2a4-KDXWH1oIK30uYBoq6iu6D-emfSdvGFeCskA4FvZjLTzHxDyL4U0jMPBqgT5SORMRmVSsgos7BScMOUw0RxdC4H1-LsJr1pkcNZL4xzLhSfuS5-hrd8-2im-KuspyF1UtjZOwdqVvVqNV6Xg-bqwI2asognMW-eJGPduxoOIRFMID_FC5eJL1dQmKnywxGH2-V0mYyac1VFJXfd6aTsmvdvlI3_PfgKWarDTNqv9GKVtNx4jSx-Ih9cJ_eDN-zWosNPpJwU0ELcLb0skDaY9kHTwePQPlKPv95WfY50FMZOU4h3KXYngBzO_QzTJkD0uBpyTy_AGz3UbZ4b5Pr05OpoENWzFyKTaDaJjI8tmHLKS1FaWRSxKwoIzbLSemUKzmHBx94ljCtjTKlTVVqdcp_GXqaWWb5J5sePY7dFKFK-SSukMD4TmU2RtIopJNpLjGDOtEmvgSM3NTE5nvg-DwlKrHMAMEcA8xrANjmYSTxVpBx_7F1HPGb7aijapNMgntdW-5InOBNdap6p7d-ldshCgjUtocasQ-Ynz1O3C0HJpNwL2vgBfJ7d6Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LaxRBEC5CclAPGo3iahL74EVwdqenX9PHJQ92NRsPbiC3YaYfEEw2QXdB8-tT1TOzRA3ibaC7oOGrrsd01VcA77XUkUe8gLYwMZMl11ljpM5Kjyu1cNwEShRnp3pyJj-dq_MN-LjuhQkhpOKzMKTP9Jbvr92KfpWNLKZOhjp7t9DvS9V2a_V2V6Du2sSOqngmilz0j5K5Hc2nU0wFC8xQyeVy-ZsTSlNV_jLFyb8cP4NZf7K2rOTbcLVshu72D9LG_z36NjztAk02bjXjOWyExQt4co9-cAcuJ7-oX4tN79FyMsSLkPfsa03EwWyMuo42h42JfPznRdvpyGZp8DTDiJdRfwLK0eTPNG8CRQ_bMffsC9qjq67R8yWcHR_NDyZZN30hc4Xly8zF3ONlVqKRjdd1nYe6xuCsbHw0rhYCF2IeQ8GFcc41VpnGWyWiyqNWnnvxCjYX14vwGhiRvmkvtXSxlKVXRFvFDVHtFU7y4AYw6uGoXEdNTie-rFKKktsKAawIwKoDcAAf1hI3LS3HP_buEB7rfR0UA9jtEa-6e_ujKmgquraiNG8elnoHjybz2Ul1Mj39_BYeF1ThkirOdmFz-X0V9jBEWTb7STPvAEFt4TY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Intelligence+Assisted+Sample+Average+Approximation+Method+for+Chance+Constrained+Dynamic+Optimization&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Zhou%2C+Xiaojun&rft.au=Wang%2C+Xiangyue&rft.au=Huang%2C+Tingwen&rft.au=Yang%2C+Chunhua&rft.date=2021-09-01&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=9&rft.spage=6409&rft.epage=6418&rft_id=info:doi/10.1109%2FTII.2020.3006514&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TII_2020_3006514 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |