Hybrid Intelligence Assisted Sample Average Approximation Method for Chance Constrained Dynamic Optimization
Realistic industrial process is usually a dynamic process with uncertainty. Chance constraints are applicable to industrial process modeling under uncertain conditions, where constraints cannot be strictly met, or need not be fully met. Therefore, chance constrained dynamic optimization (CCDO) formu...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 17; no. 9; pp. 6409 - 6418 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1551-3203 1941-0050 |
DOI | 10.1109/TII.2020.3006514 |
Cover
Summary: | Realistic industrial process is usually a dynamic process with uncertainty. Chance constraints are applicable to industrial process modeling under uncertain conditions, where constraints cannot be strictly met, or need not be fully met. Therefore, chance constrained dynamic optimization (CCDO) formulation is available to address realistic industrial process issues. Because of the dynamic and uncertainty, chance constrained dynamic optimization problems (CCDOPs) arising from practical industries are hard to cope with. In this article, a novel CCDO method is proposed to resolve this issue, where an adaptive sample average approximation method, a control vector parameterization method, and a state constraint handling strategy are integrated. Specially, a hybrid intelligent optimization algorithm is introduced to realize a global and efficient optimization performance. The proposed method is applied to CCDOPs modified by dynamic optimization standard test functions and industrial experiments to demonstrate its effectiveness. The experimental results show that the proposed method has good performance in solving CCDOPs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2020.3006514 |