Output-Tracking Quantized Explicit Nonlinear Model Predictive Control Using Multiclass Support Vector Machines

In applications involving digital control, the set of admissible control actions is finite/quantized. Coupled with state constraints and fast dynamics, explicit model predictive control (EMPC) provides an attractive control formalism. However, the design of data-driven EMPCs with finite admissible c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 64; no. 5; pp. 4130 - 4138
Main Authors Chakrabarty, Ankush, Buzzard, Gregery T., Zak, Stanislaw H.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In applications involving digital control, the set of admissible control actions is finite/quantized. Coupled with state constraints and fast dynamics, explicit model predictive control (EMPC) provides an attractive control formalism. However, the design of data-driven EMPCs with finite admissible control sets is a challenging and relatively unexplored problem. In this paper, a systematic data-driven method is proposed for the design of quantized EMPCs (Q-EMPCs) for time-varying output tracking in nonlinear systems. The design involves: 1) sampling the admissible state space using low-discrepancy sequences to provide scalability to higher dimensional nonlinear systems; 2) at each sampled data point, solving for optimal quantized model predictive control actions and determining feasibility of the intrinsic mixed-integer nonlinear programming problem; and 3) constructing the Q-EMPC control surface using multiclass support vector machines (MC-SVMs). In particular, four widely used MC-SVM algorithms are employed to construct the proposed data-driven Q-EMPC. Extensive testing and comparison among the different MC-SVM algorithms is performed on 2-D and 5-D benchmark examples to demonstrate the effectiveness and scalability of the proposed methodology.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2016.2638401