A Ping-Pong Charge-Sharing Locking PLL With Implicit Reference Doubling and Simultaneous Frequency/Duty-Cycle Calibrations
We propose a new ping-pong (PP) charge-sharing locking (CSL) phase-locked loop (PLL) architecture that enhances the strength of charge-injection into the oscillator's LC-tank using complementary charge-sharing capacitors during both positive and negative halves of the reference clock, effective...
Saved in:
Published in | IEEE journal of solid-state circuits Vol. 60; no. 4; pp. 1368 - 1383 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a new ping-pong (PP) charge-sharing locking (CSL) phase-locked loop (PLL) architecture that enhances the strength of charge-injection into the oscillator's LC-tank using complementary charge-sharing capacitors during both positive and negative halves of the reference clock, effectively achieving an implicit <inline-formula> <tex-math notation="LaTeX">2\times </tex-math></inline-formula> reference frequency multiplication. The design includes a simultaneous frequency-tracking loop (FTL) and duty-cycle calibration (DCC) loop for robust PVT tracking, employing an ultralow-power bang-bang phase-detector (BB-PD). A class-F3 oscillator along with its third harmonic extractor generate the ~27 GHz output. Implemented in 28 nm CMOS, the PP-CSL PLL demonstrates a threefold increase in injection strength compared to the conventional CSL PLLs, while resolving the load-modulation issue and improving the reference spur by ~15 dB. It achieves an ultralow rms jitter of 42 fs with a power consumption of only 14 mW, resulting in an outstanding jitter-normalized figure of merit (<inline-formula> <tex-math notation="LaTeX">\rm FoM_{{\mathrm { jitter}}{-}N} </tex-math></inline-formula>) of −276.6 dB. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/JSSC.2025.3535888 |