Robust and Efficient Quadrotor Trajectory Generation for Fast Autonomous Flight

In this letter, we propose a robust and efficient quadrotor motion planning system for fast flight in three-dimensional complex environments. We adopt a kinodynamic path searching method to find a safe, kinodynamic feasible, and minimum-time initial trajectory in the discretized control space. We im...

Full description

Saved in:
Bibliographic Details
Published inIEEE robotics and automation letters Vol. 4; no. 4; pp. 3529 - 3536
Main Authors Zhou, Boyu, Gao, Fei, Wang, Luqi, Liu, Chuhao, Shen, Shaojie
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.10.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this letter, we propose a robust and efficient quadrotor motion planning system for fast flight in three-dimensional complex environments. We adopt a kinodynamic path searching method to find a safe, kinodynamic feasible, and minimum-time initial trajectory in the discretized control space. We improve the smoothness and clearance of the trajectory by a B-spline optimization, which incorporates gradient information from a Euclidean distance field and dynamic constraints efficiently utilizing the convex hull property of B-spline. Finally, by representing the final trajectory as a non-uniform B-spline, an iterative time adjustment method is adopted to guarantee dynamically feasible and non-conservative trajectories. We validate our proposed method in various complex simulational environments. The competence of the method is also validated in challenging real-world tasks. We release our code as an open-source package.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2019.2927938