On DoA Estimation for Rotating Arrays Using Stochastic Maximum Likelihood Approach

The flexibility needed to construct DoA estimators that can be used with rotating arrays subject to rapid variations of the signal frequency is offered by the stochastic maximum likelihood approach. Using a combination of analytic methods and Monte Carlo simulations, we show that for low and moderat...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 68; pp. 5219 - 5229
Main Authors Meller, Michal, Stawiarski, Kamil
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The flexibility needed to construct DoA estimators that can be used with rotating arrays subject to rapid variations of the signal frequency is offered by the stochastic maximum likelihood approach. Using a combination of analytic methods and Monte Carlo simulations, we show that for low and moderate source correlations the stochastic maximum likelihood estimator that assumes noncorrelated sources has accuracy comparable to the estimator that includes the correlation coefficient as one of the parameters. We propose several fast approximations of the stochastic maximum likelihood estimator and compare their accuracy with the Crámer-Rao lower bound. We also discuss the model order selection problem for the binary- and multiple-hypotheses cases.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2020.3022207