Predictor-Based Data-Driven Model-Free Adaptive Predictive Control of Power Converters Using Machine Learning
In this article, a novel robust data-driven model-free predictive control framework based on the I/O data of the controlled plants, which is performed by incorporating the neural predictor-based model-free adaptive control and finite control-set model predictive control, is first proposed. The salie...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 70; no. 8; pp. 1 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, a novel robust data-driven model-free predictive control framework based on the I/O data of the controlled plants, which is performed by incorporating the neural predictor-based model-free adaptive control and finite control-set model predictive control, is first proposed. The salient feature of the suggested framework is that the uncertainties, such as unmodeled dynamics and external disturbances, can be explicitly addressed in controlled systems. From a practical standpoint, however, the potential of this proposal is limited by a significantly increased online computational complexity, which makes it difficult to implement. To circumvent this limitation, a supervised imitation learning technique using data labeled is developed to imitate the known suggested controller, which the majority of the online computational burden can be transformed into offline computing by utilizing a trained artificial neural network subject to robustness characteristics. In particular, this development motivates a much simpler robust predictive control solution, which is convenient to implement in applications. Thus, by this proposal, the online implementation of much more complex predictive control strategies is made possible, and it explores a new possibility for future development of the complex control methodology. Finally, extensive simulative and experimental investigations for modular multilevel converter validate the interest and viability of the proposed design methodology. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2022.3208594 |