Joint Design of Surveillance Radar and MIMO Communication in Cluttered Environments

In this study, we consider a spectrum sharing architecture, wherein a multiple-input multiple-output communication system cooperatively coexists with a surveillance radar. The degrees of freedom for system design are the transmit powers of both systems, the receive linear filters used for pulse comp...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 68; pp. 1544 - 1557
Main Authors Grossi, Emanuele, Lops, Marco, Venturino, Luca
Format Journal Article
LanguageEnglish
Published New York IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, we consider a spectrum sharing architecture, wherein a multiple-input multiple-output communication system cooperatively coexists with a surveillance radar. The degrees of freedom for system design are the transmit powers of both systems, the receive linear filters used for pulse compression and interference mitigation at the radar, and the space-time communication codebook. The design criterion is the maximization of the mutual information between the input and output symbols of the communication system, subject to constraints aimed at safeguarding the radar performance. Unlike previous studies, we do not require any time-synchronization between the two systems, and we guarantee the radar performance on all of the range-azimuth cells of the patrolled region under signal-dependent (endogenous) and signal-independent (exogenous) interference. This leads to a non-convex problem, and an approximate solution is thus introduced using a block coordinate ascent method. A thorough analysis is provided to show the merits of the proposed approach and emphasize the inherent tradeoff among the achievable mutual information, the density of scatterers in the environment, and the number of protected radar cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2020.2974708