An Enhanced Equivalent Circuit Model With Real-Time Parameter Identification for Battery State-of-Charge Estimation
This article introduces an efficient modeling approach based on the Wiener structure to reinforce the capacity of classical equivalent circuit models (ECMs) in capturing the nonlinearities of lithium-ion (Li-ion) batteries. The proposed block-oriented modeling architecture is composed of a simple li...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 69; no. 4; pp. 3743 - 3751 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article introduces an efficient modeling approach based on the Wiener structure to reinforce the capacity of classical equivalent circuit models (ECMs) in capturing the nonlinearities of lithium-ion (Li-ion) batteries. The proposed block-oriented modeling architecture is composed of a simple linear ECM followed by a static output nonlinearity block, which helps achieving a superior nonlinear mapping property while maintaining the real-time efficiency. The observability of the established battery model is analytically proven. This article also introduces an efficient parameter estimator based on extended-kernel iterative recursive least squares algorithm for real-time estimation of the parameters of the proposed Wiener model. The proposed approach is applied for state-of-charge (SoC) estimation of 3.4-Ah 3.6-V nickel-manganese-cobalt-based Li-ion cells using the extended Kalman filter (EKF). The results show about 1.5% improvement in SoC estimation accuracy compared with the EKF algorithm based on the second-order ECM. A series of real-time tests are also carried out to demonstrate the computational efficiency of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2021.3071679 |