An Enhanced Equivalent Circuit Model With Real-Time Parameter Identification for Battery State-of-Charge Estimation

This article introduces an efficient modeling approach based on the Wiener structure to reinforce the capacity of classical equivalent circuit models (ECMs) in capturing the nonlinearities of lithium-ion (Li-ion) batteries. The proposed block-oriented modeling architecture is composed of a simple li...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 69; no. 4; pp. 3743 - 3751
Main Authors Naseri, Farshid, Schaltz, Erik, Stroe, Daniel-Ioan, Gismero, Alejandro, Farjah, Ebrahim
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article introduces an efficient modeling approach based on the Wiener structure to reinforce the capacity of classical equivalent circuit models (ECMs) in capturing the nonlinearities of lithium-ion (Li-ion) batteries. The proposed block-oriented modeling architecture is composed of a simple linear ECM followed by a static output nonlinearity block, which helps achieving a superior nonlinear mapping property while maintaining the real-time efficiency. The observability of the established battery model is analytically proven. This article also introduces an efficient parameter estimator based on extended-kernel iterative recursive least squares algorithm for real-time estimation of the parameters of the proposed Wiener model. The proposed approach is applied for state-of-charge (SoC) estimation of 3.4-Ah 3.6-V nickel-manganese-cobalt-based Li-ion cells using the extended Kalman filter (EKF). The results show about 1.5% improvement in SoC estimation accuracy compared with the EKF algorithm based on the second-order ECM. A series of real-time tests are also carried out to demonstrate the computational efficiency of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2021.3071679