Experimental Investigation of a Photogenerated Silicon Plasma Monopole Antenna

This work investigates the photoconductive effect in high-resistivity silicon (HRS) as the radiating element of a plasma monopole antenna. A silicon chiplet forming the monopole is mounted on top of an antenna feed network patterned on a printed circuit board (PCB) substrate. By exciting the silicon...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 70; no. 12; pp. 11353 - 11360
Main Authors Jones, Thomas R., Fisher, Alden, Peroulis, Dimitrios
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This work investigates the photoconductive effect in high-resistivity silicon (HRS) as the radiating element of a plasma monopole antenna. A silicon chiplet forming the monopole is mounted on top of an antenna feed network patterned on a printed circuit board (PCB) substrate. By exciting the silicon chiplet with a light source supplied by optical fibers, the monopole can be changed from a dielectric to a conductor, thus making the antenna indistinguishable from typical substrates in the OFF-state and radiating in its ON-state. The experimental results show a peak broadside realized gain of −2.6 dBi at 16.9 GHz and an ON/OFF ratio greater than 17.8 dB from 14.2 to 20 GHz. The silicon plasma antenna is also shown to radiate between 43% and 62% of the broadside power in comparison to a fully copper monopole antenna with equivalent dimensions. The proposed photogenerated silicon plasma monopole antenna demonstrates significant potential as an antenna element for integration within a plasma antenna array system.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2022.3209269