Resilient Model Predictive Control for Constrained Cyber-Physical Systems Subject to Severe Attacks on the Communication Channels
In this article, a robust model predictive control strategy is developed for networked cyber-physical systems under false data injections. The main feature of the proposed scheme relies on the capability to mitigate undesired system behaviors due to external malicious actions. This is achieved by sh...
Saved in:
Published in | IEEE transactions on automatic control Vol. 67; no. 4; pp. 1822 - 1836 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, a robust model predictive control strategy is developed for networked cyber-physical systems under false data injections. The main feature of the proposed scheme relies on the capability to mitigate undesired system behaviors due to external malicious actions. This is achieved by showing that set-membership conditions allow us to quickly detect data integrity anomalies and, as a consequence, to implement adequate countermeasures. The core of the resulting solution exploits receding horizon and set-theoretic control ideas so that the resilient nature of the virtual control moves is formally put in light. Simulations on a <inline-formula><tex-math notation="LaTeX">B747-100/200</tex-math></inline-formula> aircraft model show effectiveness and merits of the proposed resilient control architecture. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2021.3084237 |