Robust Output Constrained Control for Uncertain Nonlinear Systems Subject to Magnitude and Rate Saturation: Application to Aircraft Engine

In this article, we investigate the output constrained control problem of uncertain nonlinear systems subject to magnitude and rate saturation. First, a novel output constrained controller is proposed based on the antiwindup approach and the active disturbance rejection control technique. Second, th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 17; no. 9; pp. 6044 - 6053
Main Authors Yu, Liang, Li, Pengyuan, Sun, Xi-Ming
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we investigate the output constrained control problem of uncertain nonlinear systems subject to magnitude and rate saturation. First, a novel output constrained controller is proposed based on the antiwindup approach and the active disturbance rejection control technique. Second, the stability is analyzed for the closed-loop system incorporating the proposed controller. Third, we establish the admissible set of initial states, which the initial state belongs to such that the output limit violation is prevented. An optimization algorithm is then presented for the antiwindup gain computation. The computed antiwindup gain guarantees a maximized admissible set of initial states and local asymptotic stability. Finally, the proposed method is applied to the aircraft engine control based on a semiphysical platform. The experimental results validate the effectiveness of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2020.3038939