Robust Output Constrained Control for Uncertain Nonlinear Systems Subject to Magnitude and Rate Saturation: Application to Aircraft Engine
In this article, we investigate the output constrained control problem of uncertain nonlinear systems subject to magnitude and rate saturation. First, a novel output constrained controller is proposed based on the antiwindup approach and the active disturbance rejection control technique. Second, th...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 17; no. 9; pp. 6044 - 6053 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, we investigate the output constrained control problem of uncertain nonlinear systems subject to magnitude and rate saturation. First, a novel output constrained controller is proposed based on the antiwindup approach and the active disturbance rejection control technique. Second, the stability is analyzed for the closed-loop system incorporating the proposed controller. Third, we establish the admissible set of initial states, which the initial state belongs to such that the output limit violation is prevented. An optimization algorithm is then presented for the antiwindup gain computation. The computed antiwindup gain guarantees a maximized admissible set of initial states and local asymptotic stability. Finally, the proposed method is applied to the aircraft engine control based on a semiphysical platform. The experimental results validate the effectiveness of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2020.3038939 |