Coordinated Control of Networked AC/DC Microgrids With Adaptive Virtual Inertia and Governor-Gain for Stability Enhancement

This article proposes an adaptive coordinated control strategy for the networked AC/DC microgrids (MGs) to enhance the frequency and dc voltage stability of the system while keeping proper power sharing. First, a control strategy based on the synchronverter and virtual dc machine (VDCM) for the conv...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on energy conversion Vol. 36; no. 1; pp. 95 - 110
Main Authors Zhang, Yi, Sun, Qiuye, Zhou, Jianguo, Li, Linjuan, Wang, Panfeng, Guerrero, Josep M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article proposes an adaptive coordinated control strategy for the networked AC/DC microgrids (MGs) to enhance the frequency and dc voltage stability of the system while keeping proper power sharing. First, a control strategy based on the synchronverter and virtual dc machine (VDCM) for the converters connecting the AC and DC MGs is proposed, which is consisted of an adaptive virtual governor and an adaptive virtual inertia regulator besides the power sharing controller. Following, in order to enhance the system stability performance, the parameter design approach of the adaptive virtual inertia and virtual governor-gain is proposed accordingly, in which the adaptive virtual inertia and virtual governor-gain are comprehensively determined by the frequency and/or dc voltage, virtual rotor speed, and rate of change of the frequency (ROCOF) and/or dc voltage (ROCOV). After that, the small-signal stability analysis of the networked AC/DC MGs with the proposed control strategy is investigated to guide the design and selection of control parameters. Finally, simulation and experimental results demonstrate that the proposed method improves the frequency/dc voltage nadir and dynamic performance of the system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2020.3011223