Quantum LDPC Codes With Almost Linear Minimum Distance

We give a construction of quantum LDPC codes of dimension <inline-formula> <tex-math notation="LaTeX">\Theta (\log N) </tex-math></inline-formula> and distance <inline-formula> <tex-math notation="LaTeX">\Theta (N/\log N) </tex-math></...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 68; no. 1; pp. 213 - 229
Main Authors Panteleev, Pavel, Kalachev, Gleb
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We give a construction of quantum LDPC codes of dimension <inline-formula> <tex-math notation="LaTeX">\Theta (\log N) </tex-math></inline-formula> and distance <inline-formula> <tex-math notation="LaTeX">\Theta (N/\log N) </tex-math></inline-formula> as the code length <inline-formula> <tex-math notation="LaTeX">N\to \infty </tex-math></inline-formula>. Using a product of chain complexes this construction also provides a family of quantum LDPC codes of distance <inline-formula> <tex-math notation="LaTeX">\Omega (N^{1-\alpha /2}/\log N) </tex-math></inline-formula> and dimension <inline-formula> <tex-math notation="LaTeX">\Omega (N^\alpha \log N) </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">0 \le \alpha < 1 </tex-math></inline-formula>. We also introduce and study a new operation called lifted product, which naturally generalizes the product operations for quantum codes and chain complexes. Moreover, as a simple byproduct of our results on quantum codes, we obtain a new result on classical codes. We show that for any fixed <inline-formula> <tex-math notation="LaTeX">R < 1 </tex-math></inline-formula> there exists an asymptotically good family of classical quasi-cyclic LDPC codes of rate at least <inline-formula> <tex-math notation="LaTeX">R </tex-math></inline-formula> with, in some sense, optimal circulant size <inline-formula> <tex-math notation="LaTeX">\Omega (N/\log N) </tex-math></inline-formula> as the code length <inline-formula> <tex-math notation="LaTeX">N\to \infty </tex-math></inline-formula>.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2021.3119384