Finite-Time Sliding-Mode Control of Markovian Jump Cyber-Physical Systems Against Randomly Occurring Injection Attacks

This paper addresses a finite-time sliding-mode control problem for a class of Markovian jump cyber-physical systems. It is assumed that the control input signals transmitted via a communication network are vulnerable to cyber-attacks, in which the adversaries may inject false data in a probabilisti...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 65; no. 3; pp. 1264 - 1271
Main Authors Cao, Zhiru, Niu, Yugang, Song, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper addresses a finite-time sliding-mode control problem for a class of Markovian jump cyber-physical systems. It is assumed that the control input signals transmitted via a communication network are vulnerable to cyber-attacks, in which the adversaries may inject false data in a probabilistic way into the control signals. Meanwhile, there may exist randomly occurring uncertainties and peak-bounded external disturbances. A suitable sliding mode controller is designed such that state trajectories are driven onto the specified sliding surface during a given finite-time (possibly short) interval. By introducing a partitioning strategy, the stochastic finite-time boundedness over the reaching phase and the sliding motion phase is analyzed, respectively. A key feature is that a set of mode-dependent sufficiently small scalars are introduced into some coupled Lyapunov inequalities such that the feasible solutions are easily obtained for the stochastic finite-time boundedness of the closed-loop systems. Finally, the practical system about a single-link robot-arm model is given to illustrate the present method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2019.2926156