Data-Driven Resilient Predictive Control Under Denial-of-Service

The study of resilient control of linear time-invariant (LTI) systems against denial-of-service (DoS) attacks is gaining popularity in emerging cyber-physical applications. In previous works, explicit system models are required to design a predictor-based resilient controller. These models can be ei...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 68; no. 8; pp. 4722 - 4737
Main Authors Liu, Wenjie, Sun, Jian, Wang, Gang, Bullo, Francesco, Chen, Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The study of resilient control of linear time-invariant (LTI) systems against denial-of-service (DoS) attacks is gaining popularity in emerging cyber-physical applications. In previous works, explicit system models are required to design a predictor-based resilient controller. These models can be either given a priori or obtained through a prior system identification step. Recent research efforts have focused on data-driven control based on precollected input-output trajectories (i.e., without explicit system models). In this article, we take an initial step toward data-driven stabilization of LTI systems under DoS attacks, and develop a resilient model predictive control scheme driven purely by data-dependent conditions. The proposed data-driven control method achieves the same level of resilience as the model-based control method. For example, local input-to-state stability (ISS) is achieved under mild assumptions on the noise and the DoS attacks. To recover global ISS, two modifications are further suggested at the price of reduced resilience against DoS attacks or increased computational complexity. Finally, a numerical example is given to validate the effectiveness of the proposed control method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3209399