Channel-Adaptive Wireless Image Transmission With OFDM

We present a learning-based channel-adaptive joint source and channel coding (CA-JSCC) scheme for wireless image transmission over multipath fading channels. The proposed method is an end-to-end autoencoder architecture with a dual-attention mechanism employing orthogonal frequency division multiple...

Full description

Saved in:
Bibliographic Details
Published inIEEE wireless communications letters Vol. 11; no. 11; pp. 2400 - 2404
Main Authors Wu, Haotian, Shao, Yulin, Mikolajczyk, Krystian, Gunduz, Deniz
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a learning-based channel-adaptive joint source and channel coding (CA-JSCC) scheme for wireless image transmission over multipath fading channels. The proposed method is an end-to-end autoencoder architecture with a dual-attention mechanism employing orthogonal frequency division multiplexing (OFDM) transmission. Unlike the previous works, our approach is adaptive to channel-gain and noise-power variations by exploiting the estimated channel state information (CSI). Specifically, with the proposed dual-attention mechanism, our model can learn to map the features and allocate transmission-power resources judiciously to the available subchannels based on the estimated CSI. Extensive numerical experiments verify that CA-JSCC achieves state-of-the-art performance among existing JSCC schemes. In addition, CA-JSCC is robust to varying channel conditions and can better exploit the limited channel resources by transmitting critical features over better subchannels.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2022.3204837