Delay Margin of Low-Order Systems Achievable by PID Controllers

This paper concerns the delay margin achievable using proportional-integral-derivative (PID) controllers for linear time-invariant (LTI) systems subject to variable, unknown time delays. The basic issue under investigation addresses the question: What is the largest range of time delay so that there...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 64; no. 5; pp. 1958 - 1973
Main Authors Ma, Dan, Chen, Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper concerns the delay margin achievable using proportional-integral-derivative (PID) controllers for linear time-invariant (LTI) systems subject to variable, unknown time delays. The basic issue under investigation addresses the question: What is the largest range of time delay so that there exists a single PID controller to stabilize the delay plants within the entire range? Delay margin is a fundamental measure of robust stabilization against uncertain time delays and poses a fundamental, longstanding problem that remains open except in simple, isolated cases. In this paper, we develop explicit expressions of the exact delay margin and its upper bounds achievable by a PID controller for low-order delay systems, notably the first- and second-order unstable systems with unknown constant and possibly time-varying delays. The effect of nonminimum phase zeros is also examined. PID controllers have been extensively used to control and regulate industrial processes that are typically modeled by first- and second-order dynamics. While furnishing the fundamental limits of delay within which a PID controller may robustly stabilize a delay process, our results should also provide useful guidelines in tuning PID parameters and in the analytical design of PID controllers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2018.2853567