Connected Vehicle Based Distributed Meta-Learning for Online Adaptive Engine/Powertrain Fuel Consumption Modeling

A microscopic fuel consumption model with respect to comprehensive fuel consumption key impact factors that can reflect dynamic engine operations and various real-world driving conditions is essential for fuel efficient model-based vehicle and powertrain control (MB-VPC). Existing microscopic fuel c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 69; no. 9; pp. 9553 - 9565
Main Authors Ma, Xin, Shahbakhti, Mahdi, Chigan, Chunxiao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A microscopic fuel consumption model with respect to comprehensive fuel consumption key impact factors that can reflect dynamic engine operations and various real-world driving conditions is essential for fuel efficient model-based vehicle and powertrain control (MB-VPC). Existing microscopic fuel consumption models are mostly steady state models with limited vehicle parameters as dynamic variables. Data-driven solutions can make the model comprehensive by introducing broad impact factors. However, without the required accessible online computational capability and fast model adaptation mechanisms, those data-driven solutions cannot quickly adapt to unseen driving conditions and engine condition changes based on real-world vehicle data to support MB-VPC. In this paper, a connected vehicle-based data mining (CV-DM) framework is proposed to achieve online adaptive dynamic fuel consumption modeling through knowledge sharing over CVs and the CV remote data center. Based on the CV-DM framework, CV-supported Distributed Meta-regression (CV-DMR) algorithms are developed to realize a fast few-shot adaptation with limited training data. Extensive proof-of-concept experiments are conducted with steady-state and transient vehicle engine data. Compared to the baseline physical model and the existing non-adaptive grey-box model, prediction accuracy is improved by 47%-85% and 38%-80% respectively with only limited training data needed for the subject vehicle. Accordingly, a fuel savings of up to 9.4% can be achieved owing to the improvement of prediction accuracy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2020.3002491