A Beam-Steering Solution With Highly Transmitting Hybrid Metasurfaces and Circularly Polarized High-Gain Radial-Line Slot Array Antennas

A continuous beam-steering solution for circularly polarized (CP) radial-line slot array (RLSA) antennas is presented and demonstrated with a fabricated prototype. The solution is based on the near-field meta-steering (NFMS) method, which is implemented through a pair of highly transmitting hybrid m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 70; no. 1; pp. 365 - 377
Main Authors Afzal, Muhammad U., Esselle, Karu P., Koli, Mst Nishat Yasmin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A continuous beam-steering solution for circularly polarized (CP) radial-line slot array (RLSA) antennas is presented and demonstrated with a fabricated prototype. The solution is based on the near-field meta-steering (NFMS) method, which is implemented through a pair of highly transmitting hybrid metasurfaces (HMs) that are placed above a high-gain CP RLSA antenna in the near-field region. Cells in HMs, unlike conventional metasurfaces (CMs), can provide exact or close to exact phase shift with transmission magnitude larger than −1 dB. This is achieved by combining the nonoverlapping phase ranges of two dramatically different phase-shifting cells. The RLSA is stationary, while the two HMs are rotated to steer the beam in a 2-D (azimuth and elevation) space. The measured results of the prototype demonstrate that the system can steer its beam to a maximum elevation angle of 40.6° with a maximum gain of 30.9 dBic. The axial ratio remained less than 3 dB in the 3 dB beamwidth even when the beam is steered. The height of the system is only 4.5 cm, which is much less than mechanically steered reflector antennas. Unlike electronically steered high-gain antenna arrays, this system requires only few watts of power only when rotating HMs and has zero power consumption when the beam is stationary.
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2021.3111522