Integrated Adaptive Cruise Control with Weight Coefficient Self-Tuning Strategy
This paper presents a novel multi-objective coordinated adaptive cruise control (ACC) algorithm based on a model predictive control (MPC) framework which can comprehensively address issues regarding longitudinal car-following performance, lateral stability, as well as vehicle safety. During the car-...
Saved in:
Published in | Applied sciences Vol. 8; no. 6; p. 978 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app8060978 |
Cover
Loading…
Summary: | This paper presents a novel multi-objective coordinated adaptive cruise control (ACC) algorithm based on a model predictive control (MPC) framework which can comprehensively address issues regarding longitudinal car-following performance, lateral stability, as well as vehicle safety. During the car-following, vehicle dynamics, illustrating the forces acting on the tire contact patches, are established. To simplify the tightly coupled dynamics system, a state-feedback based disturbance decoupling method is employed, by which longitudinal and lateral dynamics can be completely decoupled. Furthermore, the traditional MPC control with a constant weight matrix will probably not be able to solve time-varying multi-objective coordinated optimization issues, especially in transient scenarios. A weight coefficient self-tuning strategy is therefore suggested by which the weight coefficient for each sub-objective can be adjusted automatically with the change of traffic scenarios, accordingly improving the overall car-following performance. The simulations show that the control algorithm utilizing the suggested self-tuning strategy reaps significant benefits in terms of longitudinal car-following performance, while at the same time maintaining a small lateral stability error range. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app8060978 |