Flux-Switching Permanent Magnet Machines: A Review of Opportunities and Challenges-Part I: Fundamentals and Topologies

Flux-switching permanent magnet (FSPM) machines have been gaining interest over the last few decades. This is due to the several advantages that this type of machines provides. These advantages include high torque density due to the flux-focusing effects, favorable thermal management due to the loca...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on energy conversion Vol. 35; no. 2; pp. 684 - 698
Main Authors Chen, Hao, EL-Refaie, Ayman M., Demerdash, Nabeel A. O.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Flux-switching permanent magnet (FSPM) machines have been gaining interest over the last few decades. This is due to the several advantages that this type of machines provides. These advantages include high torque density due to the flux-focusing effects, favorable thermal management due to the location of PMs on the stator, passive and hence robust rotor structure which is suitable for high-speed applications, etc. The two-part companion articles are going to provide a comprehensive analysis of FSPM machines in terms of opportunities and challenges. In the first part of these two-part series, it covers the principle theory, computation methods, various topologies of FSPM machines, and the comparison with other PM machines. Meanwhile, the basic performance characteristics and design requirements, viz. torque density, over-load torque capability, flux-weakening capability, fault-tolerance capability, as well as the latest development, are also provided.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2019.2956600