Model-Guided Multi-Path Knowledge Aggregation for Aerial Saliency Prediction
As an emerging vision platform, a drone can look from many abnormal viewpoints which brings many new challenges into the classic vision task of video saliency prediction. To investigate these challenges, this paper proposes a large-scale video dataset for aerial saliency prediction, which consists o...
Saved in:
Published in | IEEE transactions on image processing Vol. 29; pp. 7117 - 7127 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | As an emerging vision platform, a drone can look from many abnormal viewpoints which brings many new challenges into the classic vision task of video saliency prediction. To investigate these challenges, this paper proposes a large-scale video dataset for aerial saliency prediction, which consists of ground-truth salient object regions of 1,000 aerial videos, annotated by 24 subjects. To the best of our knowledge, it is the first large-scale video dataset that focuses on visual saliency prediction on drones. Based on this dataset, we propose a Model-guided Multi-path Network (MM-Net) that serves as a baseline model for aerial video saliency prediction. Inspired by the annotation process in eye-tracking experiments, MM-Net adopts multiple information paths, each of which is initialized under the guidance of a classic saliency model. After that, the visual saliency knowledge encoded in the most representative paths is selected and aggregated to improve the capability of MM-Net in predicting spatial saliency in aerial scenarios. Finally, these spatial predictions are adaptively combined with the temporal saliency predictions via a spatiotemporal optimization algorithm. Experimental results show that MM-Net outperforms ten state-of-the-art models in predicting aerial video saliency. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2020.2998977 |