Transient Analysis of Microgrids With Parallel Synchronous Generators and Virtual Synchronous Generators

In recent years, the increasing penetration of distributed generation in microgrids challenges the control and coordination of energy resources. Especially in microgrids with virtual synchronous generator (VSG)-controlled converters and conventional synchronous generators (SG), the inherent inertia...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on energy conversion Vol. 35; no. 1; pp. 95 - 105
Main Authors Shi, Kai, Song, Wentao, Ge, Huilin, Xu, Peifeng, Yang, Yongheng, Blaabjerg, Frede
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, the increasing penetration of distributed generation in microgrids challenges the control and coordination of energy resources. Especially in microgrids with virtual synchronous generator (VSG)-controlled converters and conventional synchronous generators (SG), the inherent inertia difference (i.e., the VSG and SG) results in a poor transient performance when the VSG and/or loads are cut in/out. Thus, this paper explores the transient performance of microgrids with parallel VSG and SG systems. More importantly, a novel pre-synchronization control method is proposed to eliminate the phase jump while meeting the requirements in case of closures or re-closures of generation units. A small-signal dynamic model is presented, and accordingly, the VSG inertia and its damping can be designed considering the capacity ratio of VSG and SG units. In addition, with the power angle stability analysis, an active power provision strategy is introduced to suppress the transient power oscillation due to the inertia difference. Finally, the feasibility of the proposed methods is verified by simulations on a microgrid consisting of parallel VSG and SG units.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0885-8969
1558-0059
DOI:10.1109/TEC.2019.2943888