On the Optimal Recovery Threshold of Coded Matrix Multiplication

We provide novel coded computation strategies for distributed matrix-matrix products that outperform the recent "Polynomial code" constructions in recovery threshold, i.e., the required number of successful workers. When a fixed <inline-formula> <tex-math notation="LaTeX"...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 66; no. 1; pp. 278 - 301
Main Authors Dutta, Sanghamitra, Fahim, Mohammad, Haddadpour, Farzin, Jeong, Haewon, Cadambe, Viveck, Grover, Pulkit
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We provide novel coded computation strategies for distributed matrix-matrix products that outperform the recent "Polynomial code" constructions in recovery threshold, i.e., the required number of successful workers. When a fixed <inline-formula> <tex-math notation="LaTeX">1/m </tex-math></inline-formula> fraction of each matrix can be stored at each worker node, Polynomial codes require <inline-formula> <tex-math notation="LaTeX">m^{2} </tex-math></inline-formula> successful workers, while our MatDot codes only require <inline-formula> <tex-math notation="LaTeX">2m-1 </tex-math></inline-formula> successful workers. However, MatDot codes have higher computation cost per worker and higher communication cost from each worker to the fusion node. We also provide a systematic construction of MatDot codes. Furthermore, we propose "PolyDot" coding that interpolates between Polynomial codes and MatDot codes to trade off computation/communication costs and recovery thresholds. Finally, we demonstrate a novel coding technique for multiplying <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> matrices (<inline-formula> <tex-math notation="LaTeX">n \geq 3 </tex-math></inline-formula>) using ideas from MatDot and PolyDot codes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2929328