Adaptive Finite-Time Stabilization of Stochastic Nonlinear Systems Subject to Full-State Constraints and Input Saturation
In this article, the adaptive finite-time tracking control is studied for state constrained stochastic nonlinear systems with parametric uncertainties and input saturation. To this end, a definition of semiglobally finite-time stability in probability (SGFSP) is presented and a related stochastic Ly...
Saved in:
Published in | IEEE transactions on automatic control Vol. 66; no. 3; pp. 1306 - 1313 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, the adaptive finite-time tracking control is studied for state constrained stochastic nonlinear systems with parametric uncertainties and input saturation. To this end, a definition of semiglobally finite-time stability in probability (SGFSP) is presented and a related stochastic Lyapunov theorem is established and proved. To alleviate the serious uncertainties and state constraints, the adaptive backstepping control and barrier Lyapunov function are combined in a unified framework. Then, by applying a function approximation method and the auxiliary system method to deal with input saturation respectively, two adaptive state-feedback controllers are constructed. Based on the proposed stochastic Lyapunov theorem, each constructed controller can guarantee the closed-loop system achieves SGFSP, the system states remain in the defined compact sets and the output tracks the reference signal very well. Finally, a stochastic single-link robot system is established and used to demonstrate the effectiveness of the proposed schemes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2020.2990173 |