Guidance and Control Based on Adaptive Sliding Mode Strategy for a USV Subject to Uncertainties
This article addresses a guidance and control strategy for an unmanned surface vehicle subject to uncertainties. The controller uses a dynamic three-degree-of-freedom model with identified parameters of an experimental platform. A strategy based on adaptive sliding-mode control is designed for the m...
Saved in:
Published in | IEEE journal of oceanic engineering Vol. 46; no. 4; pp. 1144 - 1154 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article addresses a guidance and control strategy for an unmanned surface vehicle subject to uncertainties. The controller uses a dynamic three-degree-of-freedom model with identified parameters of an experimental platform. A strategy based on adaptive sliding-mode control is designed for the motion control of surge speed and heading variables, whereas a line-of-sight guidance law, with time-varying look-ahead distance, is applied to achieve path following. The adaptive controller is robust against bounded uncertainties/disturbances, and it does not overestimate the control gain. Outdoor experimental results validate the performance and advantages of the proposed control scheme in three different scenarios: 1) set-point regulation; 2) tracking of time-varying references; and 3) path following. To further demonstrate the characteristics of the proposed controller, a comparison against a standard controller while carrying an extra payload of 20% of the mass of the vessel is included. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0364-9059 1558-1691 |
DOI: | 10.1109/JOE.2021.3059210 |