UW-GAN: Single-Image Depth Estimation and Image Enhancement for Underwater Images

Due to the unavailability of large-scale underwater depth image datasets and ill-posed problems, underwater single-image depth prediction is a challenging task. An unambiguous depth prediction for single underwater image is an essential part of applications like underwater robotics, marine engineeri...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 12
Main Authors Hambarde, Praful, Murala, Subrahmanyam, Dhall, Abhinav
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Due to the unavailability of large-scale underwater depth image datasets and ill-posed problems, underwater single-image depth prediction is a challenging task. An unambiguous depth prediction for single underwater image is an essential part of applications like underwater robotics, marine engineering, and so on. This article presents an end-to-end underwater generative adversarial network (UW-GAN) for depth estimation from an underwater single image. Initially, a coarse-level depth map is estimated using the underwater coarse-level generative network (UWC-Net). Then, a fine-level depth map is computed using the underwater fine-level network (UWF-Net) which takes input as the concatenation of the estimated coarse-level depth map and the input image. The proposed UWF-Net composes of spatial and channel-wise squeeze and excitation block for fine-level depth estimation. Also, we propose a synthetic underwater image generation approach for large-scale database. The proposed network is tested on real-world and synthetic underwater datasets for its performance analysis. We also perform a complete evaluation of the proposed UW-GAN on underwater images having different color domination, contrast, and lighting conditions. Presented UW-GAN framework is also investigated for underwater single-image enhancement. Extensive result analysis proves the superiority of proposed UW-GAN over the state-of-the-art (SoTA) hand-crafted, and learning-based approaches for underwater single-image depth estimation (USIDE) and enhancement.
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2021.3120130