Dual-Sideband Constant-Envelope Frequency-Hopping Binary Offset Carrier Multiplexing Modulation for Satellite Navigation

Frequency-hopping binary offset carrier modulation improves the anti-interference performance and mitigates the autocorrelation function (ACF) ambiguity problem of binary offset carrier modulation. To save payload resources and make high-power amplifiers on satellites operate at the nonlinear satura...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 14; no. 16; p. 3871
Main Authors Ma, Jiangang, Yang, Yikang, Ye, Lvyang, Deng, Lingyu, Li, Hengnian
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Frequency-hopping binary offset carrier modulation improves the anti-interference performance and mitigates the autocorrelation function (ACF) ambiguity problem of binary offset carrier modulation. To save payload resources and make high-power amplifiers on satellites operate at the nonlinear saturation region, there is further demand for finding an efficient constant-envelope frequency-hopping binary offset carrier multiplexing technique to combine several signal components. Thus, we propose a dual-sideband constant-envelope multiplexing modulation, named asymmetric constant-envelope frequency-hopping binary offset carrier multiplexing (ACE-FHBOC), which is also a multicarrier constant-envelope multiplexing modulation. ACE-FHBOC provides higher design flexibility in the number of subcarrier frequencies than ACE-BOC while maintaining the same flexibility of signal design as ACE-BOC in the number of signal components and power ratio among components. We first establish the theory and give implementation methods of ACE-FHBOC. Then, we develop a software-defined receiver to simulate and analyze the performance for several specific ACE-FHBOC and ACE-BOC signals. The results show that the recommended ACE-FHBOC signals have lower ACF ambiguity, better anti-narrowband interference, and multipath performance than ACE-BOC under the same conditions. With these advantages, ACE-FHBOC is a promising solution for the signal design of new generation global navigation satellite systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2072-4292
2072-4292
DOI:10.3390/rs14163871