Time-Domain Characterization of Photonic Integrated Filters Subject to Fabrication Variations
Fabrication variations are a key factor to degrade the performance of photonic integrated circuits (PICs), and especially wavelength filters. We propose an efficient modeling approach to quantify the effects of fabrication variations on the time-domain performance of linear passive photonic integrat...
Saved in:
Published in | Journal of lightwave technology Vol. 37; no. 21; pp. 5561 - 5570 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.11.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fabrication variations are a key factor to degrade the performance of photonic integrated circuits (PICs), and especially wavelength filters. We propose an efficient modeling approach to quantify the effects of fabrication variations on the time-domain performance of linear passive photonic integrated circuits (including the wavelength filters) in the design stage, before fabrication. In particular, this novel approach conjugates the accuracy of the Polynomial Chaos (PC) expansion in describing stochastic variations and the efficiency of a Vector Fitting (VF)-based baseband modeling technique in performing time-domain simulations. A suitable example validates the performance of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2019.2933311 |