Event-Based Finite-Time Control for High-Order Interconnected Nonlinear Systems With Asymmetric Output Constraints

This article aims to solve the problem of decentralized event-based finite-time control for a class of high-order interconnected nonlinear systems with an asymmetric output constraint. In order to achieve finite-time stability and reduce the update frequency of the controller, a novel controller and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 67; no. 11; pp. 6135 - 6142
Main Authors Hua, Chang-Chun, Li, Qi-Dong, Li, Kuo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article aims to solve the problem of decentralized event-based finite-time control for a class of high-order interconnected nonlinear systems with an asymmetric output constraint. In order to achieve finite-time stability and reduce the update frequency of the controller, a novel controller and its event-trigger mechanism is proposed by adding a power integral technique and utilizing sign function. To fulfill the requirement of asymmetric output constraints, an asymmetric barrier Lyapunov function (BLF) is constructed, which is different from tan-type and log-type BLFs. Based on the contradictory idea and finite-time stability theory, it is proved that there is no Zeno phenomenon under this event-trigger mechanism and all state variables of the closed-loop system attenuate to the origin in the finite-time while the output signals never violate the constraint. Furthermore, the result in this article is expanded to fixed-time control. Finally, a simulation example is given to demonstrate the effectiveness of the presented strategy.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2021.3128471