Taxonomic, palaeobiological and evolutionary implications of a phylogenetic hypothesis for Ornithischia (Archosauria: Dinosauria)

Abstract The origin and evolutionary relationships of ornithischian dinosaurs are topics that have undergone a series of substantial revisions. At present there are several competing hypotheses concerning the relationship between Ornithischia and the other principal clades of Dinosauria. Some hypoth...

Full description

Saved in:
Bibliographic Details
Published inZoological journal of the Linnean Society Vol. 196; no. 4; pp. 1273 - 1309
Main Authors Norman, David B, Baron, Matthew G, Garcia, Mauricio S, Müller, Rodrigo Temp
Format Journal Article
LanguageEnglish
Published 28.11.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The origin and evolutionary relationships of ornithischian dinosaurs are topics that have undergone a series of substantial revisions. At present there are several competing hypotheses concerning the relationship between Ornithischia and the other principal clades of Dinosauria. Some hypotheses have posited a tree topology within Dinosauria that imply a ‘ghost-lineage’ for Ornithischia (whose representatives make their first unambiguous appearance in the Hettangian) that extends through a substantial portion of Triassic time. In contrast, other hypotheses have placed conventionally Triassic dinosauromorph (stem-lineage Dinosauria) taxa within the clade Ornithischia. Recently, a large-scale phylogenetic analysis recovered an array of taxa, known as ‘silesaurids’, as a paraphyletic assemblage of taxa (referred to in this article using the informal terms silesaurs or silesaurians) on the branch leading to the clade Ornithischia. This latter hypothesis of relationships would account for the apparent absence of Triassic ornithischians, because stem-lineage ornithischians (silesaurs in this article) are exclusively Triassic. However, the analysis that produced this novel topology used a dataset that, in its original form, did not include all early representatives of Ornithischia (sensu lato), and did not incorporate all the anatomical characters that have been suggested to unite Ornithischia with other dinosaurian clades (Theropoda and Sauropodomorpha). Nor did the initial study go on to expand upon some important taxonomic, palaeobiological and evolutionary implications of a topology that links a paraphyletic array of silesaurs to the clade Ornithischia. The present article addresses these latter issues by expansion and re-analysis of the original dataset. The results find further support for the hypothesis that silesaurs comprise a paraphyletic grouping of taxa on the stem of Ornithischia and that successive silesaur taxa acquire anatomical characters anagenetically in a process that culminates in the assembly of what may be described as a ‘traditional’ ornithischian. The overall topology of the consensus tree remains but little changed from the original analysis, despite the addition of new taxa and characters. To provide stability to this area of the tree and to preserve the most important of the relevant taxonomic names, we suggest a revised taxonomic framework for ornithischians that is consistent with this new topology. We retain the name Ornithischia for the total-group (traditional Ornithischia and its stem-lineage), while we resuscitate a name originally proposed by Richard Owen, Prionodontia (= ‘coarse edged teeth’) for the clade containing only the so-called traditional ornithischian (= ‘bird-hipped’) dinosaurs. We also erect Parapredentata as a more exclusive subclade in Ornithischia. This novel taxonomic framework is intended to provide phylogenetic clarity and a degree of stability in Ornithischia and Dinosauria as further analyses and new data continue to refine and re-shape the tree. The data presented in this study represent a stage in our attempt to establish an early dinosaur dataset in which character definitions and character scores are agreed upon and used consistently.
ISSN:0024-4082
1096-3642
DOI:10.1093/zoolinnean/zlac062