Sample-Efficient Sparse Phase Retrieval via Stochastic Alternating Minimization

In this work, we propose a nonconvex stochastic alternating minimizing (SAM) method for sparse phase retrieval, where an <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula>-sparse vector of length <inline-formula><tex-math notation=&quo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 70; pp. 1 - 15
Main Authors Cai, Jian-Feng, Jiao, Yuling, Lu, Xiliang, You, Juntao
Format Journal Article
LanguageEnglish
Published New York IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, we propose a nonconvex stochastic alternating minimizing (SAM) method for sparse phase retrieval, where an <inline-formula><tex-math notation="LaTeX">s</tex-math></inline-formula>-sparse vector of length <inline-formula><tex-math notation="LaTeX">n</tex-math></inline-formula> is recovered from <inline-formula><tex-math notation="LaTeX">m</tex-math></inline-formula> phaseless linear measurements. In each iteration of SAM, a batch of measurements is chosen randomly to form a sparse constrained least square subproblem, and then we employ a hard-thresholding pursuit algorithm to solve the resulting subproblem. We prove that the proposed SAM algorithm finds the target vector in at most <inline-formula><tex-math notation="LaTeX">O(\log m)</tex-math></inline-formula> steps from <inline-formula><tex-math notation="LaTeX">\Omega (s\log n)</tex-math></inline-formula> samples if provided the initial guess is in a neighbour of the ground truth. Thus, together with a desired initial guess (e.g. via a spectral method), our proposed SAM algorithm is guaranteed to have a successful sparse phase retrieval with finitely many iterations. Further, numerical experiments illustrates that SAM requires less measurements than state-of-the-art algorithms for sparse phase retrieval problem.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2022.3214091