Video Segmentation by Tracking Many Figure-Ground Segments
We propose an unsupervised video segmentation approach by simultaneously tracking multiple holistic figure-ground segments. Segment tracks are initialized from a pool of segment proposals generated from a figure-ground segmentation algorithm. Then, online non-local appearance models are trained incr...
Saved in:
Published in | 2013 IEEE International Conference on Computer Vision pp. 2192 - 2199 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding Journal Article |
Language | English |
Published |
IEEE
01.12.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose an unsupervised video segmentation approach by simultaneously tracking multiple holistic figure-ground segments. Segment tracks are initialized from a pool of segment proposals generated from a figure-ground segmentation algorithm. Then, online non-local appearance models are trained incrementally for each track using a multi-output regularized least squares formulation. By using the same set of training examples for all segment tracks, a computational trick allows us to track hundreds of segment tracks efficiently, as well as perform optimal online updates in closed-form. Besides, a new composite statistical inference approach is proposed for refining the obtained segment tracks, which breaks down the initial segment proposals and recombines for better ones by utilizing high-order statistic estimates from the appearance model and enforcing temporal consistency. For evaluating the algorithm, a dataset, SegTrack v2, is collected with about 1,000 frames with pixel-level annotations. The proposed framework outperforms state-of-the-art approaches in the dataset, showing its efficiency and robustness to challenges in different video sequences. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Conference-1 ObjectType-Feature-3 content type line 23 SourceType-Conference Papers & Proceedings-2 |
ISSN: | 1550-5499 2380-7504 |
DOI: | 10.1109/ICCV.2013.273 |