Kinematics and Dynamics of Flexible Robotic Manipulators Using Dual Screws

In this article, we present a new procedure for the derivation of the linearized kinematics and dynamics of a flexible industrial robotic manipulator. We introduce the Lie groups of dual rotation and dual homogeneous transformation matrices, which are the basis for the derivation of dual twists. In...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 37; no. 1; pp. 206 - 224
Main Authors Cibicik, Andrej, Egeland, Olav
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we present a new procedure for the derivation of the linearized kinematics and dynamics of a flexible industrial robotic manipulator. We introduce the Lie groups of dual rotation and dual homogeneous transformation matrices, which are the basis for the derivation of dual twists. In addition, dual screws and dual screw transformation matrices are introduced, which are used for the development of a general and systematic linearization procedure for both kinematics and dynamics. This leads to expressions that are linearized in all the states associated with the elastic motion. The dynamic modeling procedure is based on Kane's method, where the partial velocities and partial angular velocities are given as dual screws arranged as columns of dual projection matrices. The elasticity of the links is modeled by the assumed mode method. The presented procedure is implemented numerically for a 4-degrees of freedom manipulator and the simulation results are given.
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2020.3014519