Achieving Exact Cluster Recovery Threshold via Semidefinite Programming

The binary symmetric stochastic block model deals with a random graph of n vertices partitioned into two equal-sized clusters, such that each pair of vertices is independently connected with probability p within clusters and q across clusters. In the asymptotic regime of p = a log n/n and q = b log...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 62; no. 5; pp. 2788 - 2797
Main Authors Hajek, Bruce, Yihong Wu, Jiaming Xu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The binary symmetric stochastic block model deals with a random graph of n vertices partitioned into two equal-sized clusters, such that each pair of vertices is independently connected with probability p within clusters and q across clusters. In the asymptotic regime of p = a log n/n and q = b log n/n for fixed a, b, and n → ∞, we show that the semidefinite programming relaxation of the maximum likelihood estimator achieves the optimal threshold for exactly recovering the partition from the graph with probability tending to one, resolving a conjecture of Abbe et al. Furthermore, we show that the semidefinite programming relaxation also achieves the optimal recovery threshold in the planted dense subgraph model containing a single cluster of size proportional to n.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2016.2546280