Optimal Sensor Scheduling Under Intermittent Observations Subject to Network Dynamics

Motivated by various distributed control applications, we consider a linear system with Gaussian noise observed by multiple sensors which transmit measurements over a dynamic lossy network. We characterize the stationary optimal sensor scheduling policy for the finite horizon, discounted, and long-t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 68; no. 3; pp. 1399 - 1414
Main Authors Hmedi, Hassan, Carroll, Johnson, Arapostathis, Ari
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Motivated by various distributed control applications, we consider a linear system with Gaussian noise observed by multiple sensors which transmit measurements over a dynamic lossy network. We characterize the stationary optimal sensor scheduling policy for the finite horizon, discounted, and long-term average cost problems and show that the value iteration algorithm converges to a solution of the average cost problem. We further show that the suboptimal policies provided by the rolling horizon truncation of the value iteration also guarantee stability and provide near-optimal average cost. Lastly, we provide qualitative characterizations of the multidimensional set of measurement loss rates for which the system is stabilizable for a static network, thus extending earlier results on intermittent observations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3151578