Adaptive Fuzzy Logic Control of Fuel-Cell-Battery Hybrid Systems for Electric Vehicles
In this paper, we propose an adaptive control approach with fuzzy logic parameter tuning (AFLPT) for the energy management of electric vehicles that are using fuel cell battery hybrid systems. The controller is adaptive to different driving conditions including normal, regenerative, and overload con...
Saved in:
Published in | IEEE transactions on industrial informatics Vol. 14; no. 1; pp. 292 - 300 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we propose an adaptive control approach with fuzzy logic parameter tuning (AFLPT) for the energy management of electric vehicles that are using fuel cell battery hybrid systems. The controller is adaptive to different driving conditions including normal, regenerative, and overload conditions. Specifically, the power flow between the fuel cell (FC) and the Li-ion battery is controlled in real time to maintain the battery state of charge (SOC) at a desirable level while satisfying the FC dynamic constraints. For guaranteeing performance in different driving conditions, the FLPT is integrated with the adaptive controller. Moreover, theoretical properties of the designed controller are analyzed. Simulation and experiment results illustrate the effectiveness of the proposed strategy for FC-battery hybrid systems in electric vehicles. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2016.2618886 |