Bottom-Up Skill Discovery From Unsegmented Demonstrations for Long-Horizon Robot Manipulation
We tackle real-world long-horizon robot manipulation tasks through skill discovery. We present a bottom-up approach to learning a library of reusable skills from unsegmented demonstrations and use these skills to synthesize prolonged robot behaviors. Our method starts with constructing a hierarchica...
Saved in:
Published in | IEEE robotics and automation letters Vol. 7; no. 2; pp. 4126 - 4133 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We tackle real-world long-horizon robot manipulation tasks through skill discovery. We present a bottom-up approach to learning a library of reusable skills from unsegmented demonstrations and use these skills to synthesize prolonged robot behaviors. Our method starts with constructing a hierarchical task structure from each demonstration through agglomerative clustering. From the task structures of multi-task demonstrations, we identify skills based on the recurring patterns and train goal-conditioned sensorimotor policies with hierarchical imitation learning. Finally, we train a meta controller to compose these skills to solve long-horizon manipulation tasks. The entire model can be trained on a small set of human demonstrations collected within 30 minutes without further annotations, making it amendable to real-world deployment. We systematically evaluated our method in simulation environments and on a real robot. Our method has shown superior performance over state-of-the-art imitation learning methods in multi-stage manipulation tasks. Furthermore, skills discovered from multi-task demonstrations boost the average task success by 8% compared to those discovered from individual tasks. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2022.3146589 |