Millimeter-Wave Dual-Polarized Filtering Antenna for 5G Application

This article presents a novel dual-polarized millimeter-wave (mm-Wave) patch antenna with bandpass filtering response. The proposed antenna consists of a differential-fed cross-shaped driven patch and four stacked parasitic patches. The combination of the stacked patches and the driven patch can be...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on antennas and propagation Vol. 68; no. 7; pp. 5114 - 5121
Main Authors Yang, Sheng Jie, Pan, Yong Mei, Shi, Li-Yun, Zhang, Xiu Yin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This article presents a novel dual-polarized millimeter-wave (mm-Wave) patch antenna with bandpass filtering response. The proposed antenna consists of a differential-fed cross-shaped driven patch and four stacked parasitic patches. The combination of the stacked patches and the driven patch can be equivalent to a bandstop filtering circuit for generating a radiation null at the upper band edge. Besides, four additional shorted patches are added beside the cross-shaped driven patch to introduce another radiation null at the lower band edge. Moreover, by embedding a cross-shaped strip between these four stacked patches, the third radiation null is generated to further suppress the upper stopband. As a result, a quasi-elliptic bandpass response is realized without requiring extra filtering circuit. For demonstration, a prototype was fabricated with standard PCB process and measured. The prototype operates in the 5G band (24.25-29.5 GHz) and it has an impedance bandwidth of 20%. The out-of-band gain drops over 15 dB at 23 and 32.5 GHz, respectively, which exhibits high selectivity. These merits make the proposed antenna a good element candidate for the 5G mm-Wave massive MIMO applications to reduce the requirements of the filters in the mm-Wave RF front ends.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2020.2975534