Signal-to-interference-plus- noise-ratio analysis for constrained radar waveforms

To fully appreciate the benefits of arbitrary waveform design capability for transmit adaptive systems, the trade space between constraints (employed to increase the measure of practicality for radar) and the usual performance driver (signal-to-interference-plus-noise ratio) needs to be better defin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on aerospace and electronic systems Vol. 52; no. 5; pp. 2230 - 2241
Main Authors Jones, Aaron M., Rigling, Brian, Rangaswamy, Muralidhar
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To fully appreciate the benefits of arbitrary waveform design capability for transmit adaptive systems, the trade space between constraints (employed to increase the measure of practicality for radar) and the usual performance driver (signal-to-interference-plus-noise ratio) needs to be better defined and understood.We address this issue by developing performance models for radar waveforms with cumulative-modulus and energy constraints. Radar waveforms typically require a constant-modulus (constant-amplitude) transmit signal to efficiently exploit the available transmit power. However, recent hardware advances and the capability for arbitrary (phase and amplitude) designed waveforms have forced a reexamination of this assumption in order to quantify the impact of the nonconstant modulus property.We develop performance models for the signal-to-interference-plus-noise ratio as a function of the cumulative modulus for a random colored interference environment and validate the models against measured data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9251
1557-9603
DOI:10.1109/TAES.2016.150511