Dynamical Primal-Dual Nesterov Accelerated Method and Its Application to Network Optimization
This article develops a continuous-time primal-dual accelerated method with an increasing damping coefficient for a class of convex optimization problems with affine equality constraints. This article analyzes critical values for parameters in the proposed method and prove that the rate of convergen...
Saved in:
Published in | IEEE transactions on automatic control Vol. 68; no. 3; pp. 1760 - 1767 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9286 1558-2523 |
DOI | 10.1109/TAC.2022.3152720 |
Cover
Loading…
Summary: | This article develops a continuous-time primal-dual accelerated method with an increasing damping coefficient for a class of convex optimization problems with affine equality constraints. This article analyzes critical values for parameters in the proposed method and prove that the rate of convergence in terms of the duality gap function is <inline-formula><tex-math notation="LaTeX">O(\frac{1}{t^2})</tex-math></inline-formula> by choosing suitable parameters. As far as we know, this is the first continuous-time primal-dual accelerated method that can obtain the optimal rate. Then, this article applies the proposed method to two network optimization problems, a distributed optimization problem with consensus constraints and a distributed extended monotropic optimization problem, and obtains two variant distributed algorithms. Finally, numerical simulations are given to demonstrate the efficacy of the proposed method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/TAC.2022.3152720 |