Dynamical Primal-Dual Nesterov Accelerated Method and Its Application to Network Optimization

This article develops a continuous-time primal-dual accelerated method with an increasing damping coefficient for a class of convex optimization problems with affine equality constraints. This article analyzes critical values for parameters in the proposed method and prove that the rate of convergen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 68; no. 3; pp. 1760 - 1767
Main Authors Zeng, Xianlin, Lei, Jinlong, Chen, Jie
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2022.3152720

Cover

Loading…
More Information
Summary:This article develops a continuous-time primal-dual accelerated method with an increasing damping coefficient for a class of convex optimization problems with affine equality constraints. This article analyzes critical values for parameters in the proposed method and prove that the rate of convergence in terms of the duality gap function is <inline-formula><tex-math notation="LaTeX">O(\frac{1}{t^2})</tex-math></inline-formula> by choosing suitable parameters. As far as we know, this is the first continuous-time primal-dual accelerated method that can obtain the optimal rate. Then, this article applies the proposed method to two network optimization problems, a distributed optimization problem with consensus constraints and a distributed extended monotropic optimization problem, and obtains two variant distributed algorithms. Finally, numerical simulations are given to demonstrate the efficacy of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3152720