Modeling a Milling Dynamometer as a 3DOF Dynamic System by Stiffness Identification
The experimental determination of cutting forces during milling is an important aspect followed in the manufacturing process and involves the use of specialized devices known as dynamometers. These can be made in the laboratory, depending on the type of measurements to be made, or they can be commer...
Saved in:
Published in | Applied sciences Vol. 14; no. 12; p. 4981 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The experimental determination of cutting forces during milling is an important aspect followed in the manufacturing process and involves the use of specialized devices known as dynamometers. These can be made in the laboratory, depending on the type of measurements to be made, or they can be commercial, purchased from specialized companies. In this paper, such a dynamometer made by the authors in the laboratory is analyzed. For the elastic elements, octagonal rings are used. The main problem in the case of these dynamometers, namely the determination of the stiffness of the rings, is solved analytically, using the FEM for comparison, and then experimentally validated. The dynamic model, created based on the obtained values using d’Alembert’s principle, allows for simulating the behavior of this dynamometer in practical applications and determining the field in which it can be used. The frequencies and natural modes of vibration are determined, and the values obtained are compared with those obtained using ANSYS software 2021 R2. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app14124981 |