DWFCAT: Dual Watermarking Framework for Industrial Image Authentication and Tamper Localization

The image data received through various sensors are of significant importance in Industry 4.0. Unfortunately, these data are highly vulnerable to various malicious attacks during its transit to the destination. Although the use of pervasive edge computing (PEC) with the Internet of Things (IoT) has...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 17; no. 7; pp. 5108 - 5117
Main Authors Kamili, Asra, Hurrah, Nasir N., Parah, Shabir A., Bhat, G. M., Muhammad, Khan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The image data received through various sensors are of significant importance in Industry 4.0. Unfortunately, these data are highly vulnerable to various malicious attacks during its transit to the destination. Although the use of pervasive edge computing (PEC) with the Internet of Things (IoT) has solved various issues, such as latency, proximity, and real-time processing, but the security and authentication of data between the nodes is still a significant concern in PEC-based industrial-IoT scenarios. In this article, we present "DWFCAT," a dual watermarking framework for content authentication and tamper localization for industrial images. The robust and fragile watermarks along with overhead bits related to the cover image for tamper localization are embedded in different planes of the cover image. We have used discrete cosine transform coefficients and exploited their energy compaction property for robust watermark embedding. We make use of a four-point neighborhood to predict the value of a predefined pixel and use it for embedding the fragile watermark bits in the spatial domain. Chaotic and deoxyribonucleic acid encryption is used to encrypt the robust watermark before embedding to enhance its security. The results indicate that DWFCAT can withstand a range of hybrid signal processing and geometric attacks, such as Gaussian noise, salt and pepper, joint photographic experts group (JPEG) compression, rotation, low-pass filtering, resizing, cropping, sharpening, and histogram equalization. The experimental results prove that the DWFCAT is highly efficient compared with the various state-of-the-art approaches for authentication and tamper localization of industrial images.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2020.3028612